Taking architecture and compiler into account in formal proofs of numerical programs

Thi Minh Tuyen Nguyen

présentée le 11 juin 2012 devant le jury composé de :

Sylvie BOLDO
Florent HIVERT
Xavier LEROY
Claude MARCHÉ
David MONNIAUX
Jean-Michel MULLER
César A. MUÑOZ
A case study

KB3D (NASA Langley Research Center)
- An aircraft conflict detection and resolution program
- Formally proved correct using PVS [Dowek & Muñoz, 2005]
- Provided the calculations are exact

Our case study
- Use a small part of KB3D
- Make a decision corresponding to value -1 and 1 to decide if the plane should go to its left or its right
A case study

KB3D (NASA Langley Research Center)
- An aircraft conflict detection and resolution program
- Formally proved correct using PVS [Dowek & Muñoz, 2005]
- Provided the calculations are exact

Our case study
- Use a small part of KB3D
- Make a decision corresponding to value -1 and 1 to decide if the plane should go to its left or its right
Introductory example

```c
int sign(double x) {
    if (x >= 0) return 1;
    else return -1;
}

int eps_line(double sx, double sy, double vx, double vy) {
    int s1, s2;
    s1 = sign(sx * vx + sy * vy);
    s2 = sign(sx * vy - sy * vx);
    return s1 * s2;
}
```
Introductory example

```c
int sign(double x) {
    if (x >= 0) return 1;
    else return -1;
}

int eps_line(double sx, double sy, double vx, double vy) {
    int s1, s2;
    s1 = sign(sx * vx + sy * vy);
    s2 = sign(sx * vy - sy * vx);
    return s1 * s2;
}
```

![Graph showing sign(x) function and line equation](image)
Introductory example

```c
int sign(double x) {
    if (x >= 0) return 1;
    else return -1;
}

int eps_line(double sx, double sy, double vx, double vy) {
    int s1, s2;
    s1 = sign(sx * vx + sy * vy);
    s2 = sign(sx * vy - sy * vx);
    return s1 * s2;
}
```

Make a direction decision
Introductory example

```c
int sign(double x) {
    if (x >= 0) return 1;
    else return -1;
}

int eps_line(double sx, double sy, double vx, double vy) {
    int s1, s2;
    s1 = sign(sx * vx + sy * vy);
    s2 = sign(sx * vy - sy * vx);
    return s1 * s2;
}

int main() {
    double sx = -0x1.00000000000001p0;    // sx = -1 - 2^{-52}
    double vx = -1.0;
    double sy = 1.0;
    double vy = 0x1.ffffffffpp -1;         // vy = 1 - 2^{-53}
    int result = eps_line(sx, sy, vx, vy);
    printf("Result = %d\n", result);
}
```
Introductory example

```
int sign(double x) {
    if (x >= 0) return 1;
    else return -1;
}

int eps_line(double sx, double sy, double vx, double vy) {
    int s1, s2;
    s1 = sign(sx * vx + sy * vy);
    s2 = sign(sx * vy - sy * vx);
    return s1 * s2;
}

int main() {
    double sx = -0x1.0000000000001p0; // sx = -1 - 2^-52
    double vx = -1.0;
    double sy = 1.0;
    double vy = 0x1.ffffffffffffffff -1; // vy = 1 - 2^-53
    int result = eps_line(sx, sy, vx, vy);
    printf("Result = %d\n", result);
}
```
Introductory example

Function `sign`

```c
int sign(double x) {
    if (x == 0)
        return 1;
    else
        return -1;
}
```

Function `eps_line`

```c
int eps_line(double sx, double sy, double vx, double vy) {
    int s1, s2;
    s1 = sign(sx * vx + sy * vy);
    s2 = sign(sx * vy - sy * vx);
    return s1 * s2;
}
```

Main function

```c
int main() {
    double sx = -0x1.00000000000001p0; // sx = -1 - 2^{-52}
    double vx = -1.0;
    double sy = 1.0;
    double vy = 0x1.fffffffffffffffp -1; // vy = 1 - 2^{-53}
    int result = eps_line(sx, sy, vx, vy);
    printf("Result = %d\n", result);
}
```

Example compilation and output

- `gcc -mfpmath=387 eps_line.c`

  ```
  gcc -mfpmath=387 eps_line.c
  ```

 Result = -1
Introductory example

```c
int sign(double x) {
    if (x > 0)
        return 1;
    else
        return -1;
}

int eps_line(double sx, double sy, double vx, double vy) {
    int s1, s2;
    s1 = sign(sx * vx + sy * vy);
    s2 = sign(sx * vy - sy * vx);
    return s1 * s2;
}

int main() {
    double sx = -0x1.00000000000001p0; // sx = \( -1 - 2^{-52} \)
    double vx = -1.0;
    double sy = 1.0;
    double vy = 0x1.f8p-1; // vy = \( 1 - 2^{-53} \)
    int result = eps_line(sx, sy, vx, vy);
    printf("Result = %d\n", result);
}
```

```
gcc -mfpmath=387 eps_line.c
```

Result = -1

?!?!
Famous computer arithmetic failures

- Patriot Missile Failure in 1991:
 - inaccurate calculation of the time since boot due to computer arithmetic errors
 - 28 soldiers dead, > 90 injured

- explosion of the Ariane 5 in 1996:
 - conversion from 64-bit floating-point to 16-bit signed integer value
 - $500 millions

- FDIV bug in 1994 in the Intel Pentium processors:
 - A few floating-point divisions produced incorrect results
 - $500 millions
Famous computer arithmetic failures

- Patriot Missile Failure in 1991:
 - inaccurate calculation of the time since boot due to computer arithmetic errors
 - 28 soldiers dead, > 90 injured

- explosion of the Ariane 5 in 1996:
 - conversion from 64-bit floating-point to 16-bit signed integer value
 - $500 millions

- FDIV bug in 1994 in the Intel Pentium processors:
 - A few floating-point divisions produced incorrect results
 - $500 millions
Famous computer arithmetic failures

- Patriot Missile Failure in 1991:
 - inaccurate calculation of the time since boot due to computer arithmetic errors
 - 28 soldiers dead, > 90 injured

- explosion of the Ariane 5 in 1996:
 - conversion from 64-bit floating-point to 16-bit signed integer value
 - $500 millions

- FDIV bug in 1994 in the Intel Pentium processors:
 - A few floating-point divisions produced incorrect results
 - $500 millions
Famous computer arithmetic failures

- Patriot Missile Failure in 1991:
 - inaccurate calculation of the time since boot due to computer arithmetic errors
 - 28 soldiers dead, > 90 injured

- explosion of the Ariane 5 in 1996:
 - conversion from 64-bit floating-point to 16-bit signed integer value
 - $500 millions

- FDIV bug in 1994 in the Intel Pentium processors:
 - A few floating-point divisions produced incorrect results
 - $500 millions

⇒ Safety-critical systems require verification and certification
Architecture and rounding precision issues

- All current processors support the floating-point arithmetic standard IEEE-754
- Some architecture-dependent issues:
 - x87 floating-point unit (x87 FPU) uses 80-bit floating-point registers (supported by IA32 processors)
 - may lead to double rounding (the floating-point results are rounded twice)
 - Fused multiply-add (FMA) instruction supported by the PowerPC and the Intel Itanium architecture
 - calculates \((x \times y \pm z)\) with a single rounding
- Some compiler optimization issues such as compiler reparenthesizing
Architecture and rounding precision issues

- All current processors support the floating-point arithmetic standard IEEE-754

- Some architecture-dependent issues:
 - x87 floating-point unit (x87 FPU) uses 80-bit floating-point registers (supported by IA32 processors)
 - may lead to double rounding (the floating-point results are rounded twice)
 - Fused multiply-add (FMA) instruction supported by the PowerPC and the Intel Itanium architecture
 - calculates \((x \times y \pm z)\) with a single rounding

- Some compiler optimization issues such as compiler reparenthesizing
Architecture and rounding precision issues

- All current processors support the floating-point arithmetic standard IEEE-754

- Some architecture-dependent issues:
 - x87 floating-point unit (x87 FPU) uses 80-bit floating-point registers (supported by IA32 processors)
 - may lead to double rounding (the floating-point results are rounded twice)
 - Fused multiply-add (FMA) instruction supported by the PowerPC and the Intel Itanium architecture
 - calculates \((x \times y \pm z)\) with a single rounding

- Some compiler optimization issues such as compiler reparenthesizing
Architecture and rounding precision issues

- All current processors support the floating-point arithmetic standard IEEE-754
- Some architecture-dependent issues:
 - x87 floating-point unit (x87 FPU) uses 80-bit floating-point registers (supported by IA32 processors)
 - may lead to double rounding (the floating-point results are rounded twice)
 - Fused multiply-add (FMA) instruction supported by the PowerPC and the Intel Itanium architecture
 - calculates \((x \times y \pm z)\) with a single rounding
- Some compiler optimization issues such as compiler reparenthesizing
 \(\Rightarrow\) introduce subtle inconsistencies between program executions
Frama-C

- A framework for static analysis of C programs
- Flexible: easy to add new plug-ins

Value analysis:
uses abstract interpretation techniques
computes variation domains for variables

Jessie:
is a deductive verification plug-in

etc.
Previous works

Annotated C program

Frama-C/Jessie

Why VC generator

Automatic/interactive provers

Why VC generator

Frama-C/Jessie

Annotated C program

Previous works

Automatic/interactive provers

Formal verification of FP Programs

[Boldo & Filliâtre, 2007]

Behavioral Properties of FP Programs

[Ayad & Marché, 2010]
Previous works

Annotated C program

- Formal verification of FP Programs [Boldo & Filliâtre, 2007]
- Behavioral Properties of FP Programs [Ayad & Marché, 2010]

Frana-C/Jessie

Why VC generator

Automatic/interactive provers
Previous works

Annotated C program

Formal verification of FP Programs [Boldo & Filliâtre, 2007]

only follow the strict IEEE-754

Behavioral Properties of FP Programs [Ayad & Marché, 2010]

Frama-C/Jessie

Why VC generator

Automatic/interactive provers
Contributions of the thesis

Annotated C program

Why VC generator

Automatic/interactive provers

Take the architecture and compiler into account
Contributions of the thesis

- Annotated C program
- multirounding model
- Frama-C/Jessie
- Why VC generator
- Static analysis of C code
- Automatic/interactive provers
- Hardware-independent approach
- Hardware-dependent approach
Contributions of the thesis

- Annotated C program
- multirounding model
- Why VC generator
- Automatic/interactive provers

Hardware-independent approach:
- Static analysis of C code
- Frama-C/Jessie

Hardware-dependent approach:
- analysis of assembly code
- GNU Assembler

Why VC generator

Contributions of the thesis:

- Automatic/interactive provers
- Frama-C/Jessie
- Static analysis of C code
- GNU Assembler
- Analysis of assembly code
- Hardware-independent approach
- multirounding model
- Hardware-dependent approach
Outline

1. Introduction
2. Preliminaries
3. Hardware-independent proofs
4. Hardware-dependent proofs
5. Conclusions and Future works
Outline

1. Introduction
2. Preliminaries
3. Hardware-independent proofs
4. Hardware-dependent proofs
5. Conclusions and Future works
ANSI/ISO C Specification Language (ACSL)

- ACSL is a specification language
- ACSL allows to formally specify the properties of a C program
- Frama-C uses ACSL annotations to formally verify that the implementation respects these annotations.

```c
double square(double x){
  return x*x;
}
```
ANSI/ISO C Specification Language (ACSL)

- ACSL is a specification language
- ACSL allows to formally specify the properties of a C program
- Frama-C uses ACSL annotations to formally verify that the implementation respects these annotations.

```c
/*@ requires \abs(x) <= 1.0;
@ ensures \abs(result - x*x) <= 0x1p-53; //2^{-53}
@*/
double square(double x){
    return x*x;
}
```
ANSI/ISO C Specification Language (ACSL)

- ACSL is a specification language
- ACSL allows to formally specify the properties of a C program
- Frama-C uses ACSL annotations to formally verify that the implementation respects these annotations.

Precondition

```c
/*@ requires \abs(x) <= 1.0;
@ ensures \abs(result - x*x) <= 0x1p-53; //2^{-53}
@*/
double square(double x){
    return x*x;
}
```
ANSI/ISO C Specification Language (ACSL)

- ACSL is a specification language
- ACSL allows to formally specify the properties of a C program
- Frama-C uses ACSL annotations to formally verify that the implementation respects these annotations.

```c
/*@ requires \abs(x) <= 1.0;
@ ensures \abs(result - x*x) <= 0x1p-53; */

double square(double x){
    return x*x;
}
```
ANSI/ISO C Specification Language (ACSL)

- ACSL is a specification language
- ACSL allows to formally specify the properties of a C program
- Frama-C uses ACSL annotations to formally verify that the implementation respects these annotations.

```c
/*@ requires \abs(x) \leq 1.0;
@ ensures \abs(result - x*x) \leq 0x1p-53; //2^{-53}
@*/
double square(double x){
    return x*x;
}
```
Translation into Why

General principle:

Use Why to program an axiomatic semantics of instructions

Why logic language:

- first-order logic with equality, integer and real arithmetic
- declaration of abstract data types
- axiomatized functions and predicates

Why programming language:

- set of procedures/functions in a basic imperative language
- abstract Why subprograms, specified by pre-conditions, effects, and post-conditions
Floating-point numbers

Definition

A floating-point number x in a format $(p, e_{\text{min}}, e_{\text{max}})$ is represented by the triple (s, m, e) so that

$$x = (-1)^s \times 2^e \times m$$

- $s \in \{0, 1\}$
- $e_{\text{min}} \leq e \leq e_{\text{max}}$
- $0 \leq m < 2$, represented by p bits

Normal number vs. Subnormal number

$$|x| \geq 2^{e_{\text{min}}}$$

x is normal number

$$\frac{2^{e_{\text{min}}}}{(2 - 2^{1-p}) \times 2^{e_{\text{max}}}}$$

$0 \quad 2^{e_{\text{min}}} \quad (2 - 2^{1-p}) \times 2^{e_{\text{max}}} \quad +\infty$
Floating-point numbers

Definition

A floating-point number x in a format $(p, e_{\text{min}}, e_{\text{max}})$ is represented by the triple (s, m, e) so that

$$x = (-1)^s \times 2^e \times m$$

- $s \in \{0, 1\}$
- $e_{\text{min}} \leq e \leq e_{\text{max}}$
- $0 \leq m < 2$, represented by p bits

Normal number vs. Subnormal number

$$2^{e_{\text{min}}} \quad \leftarrow \quad (2 - 2^{1-p}) \times 2^{e_{\text{max}}} \quad \rightarrow \quad +\infty$$

$$|x| < 2^{e_{\text{min}}}$$

x is subnormal number
Floating-point numbers in Why

Abstract the IEEE-754 bit-level representation [Ayad & Marché, 2010]

```
type double
function double_value: double -> real
constant max_double: 0x1F.FFFFFFFFp1023
axiom double_range:
    forall x:double. |double_value(x)| <= max_double
function o64: real -> real
```

We consider only round-to-nearest rounding mode
Floating-point numbers in Why

\texttt{parameter add_double(x:double, y:double) :}
\{\texttt{|0_{64}(double_value(x) + double_value(y))| \leq max_double}\}
\texttt{double}
\{\texttt{double_value(result) =}
\texttt{0_{64}(double_value(x) + double_value(y))}\}\n
[Ayad & Marché, 2010]
Floating-point numbers in Why

precondition: does not overflow

```plaintext
parameter add_double(x:double, y:double) :

{ |`64(double_value(x) + double_value(y))| ≤ max_double }
double
{ double_value(result) =
`64(double_value(x) + double_value(y)) }
```

[Ayad & Marché, 2010]
Floating-point numbers in Why

follows the IEEE-754 standard

```plaintext
parameter add_double(x: double, y: double) :
{\[|^{64}(\text{double_value}(x) + \text{double_value}(y))| \leq \text{max_double}\} 

double
{\text{double_value(result)} = \[^{64}(\text{double_value}(x) + \text{double_value}(y))\}}
```

[Ayad & Marché, 2010]
Floating-point numbers in Why

follows the IEEE-754 standard

```
parameter add_double (x: double, y: double) :
  { |\circ 64 (double_value(x) + double_value(y)) | \leq \text{max_double} }
  double
  { double_value(result) =
    \circ 64 (double_value(x) + double_value(y))}
```

Gappa supports $\circ 64$

Gappa is a tool for proving properties on numerical programs [Melquiond, 2006]

[Ayad & Marché, 2010]
Floating-point numbers in Why

follows the IEEE-754 standard

\[
\text{parameter add_double} \ (x: \text{double}, \ y: \text{double}) : \begin{cases} \ |\circ_{64}(\text{double_value}(x) + \text{double_value}(y))| \leq \text{max_double} \end{cases}
\]

double
\[
\text{double_value} (\text{result}) = \circ_{64}(\text{double_value}(x) + \text{double_value}(y))
\]

\[|\text{double_value(result)} - (\text{double_value}(x) + \text{double_value}(y))| \leq ?\]
Outline

1. Introduction
2. Preliminaries
3. Hardware-independent proofs
4. Hardware-dependent proofs
5. Conclusions and Future works
Double rounding example

```c
int main(){
    double x = 1.0;
    double y = 0x1p-53 + 0x1p-64; // 2^{-53} + 2^{-64}
    double z = x + y;

    printf("z=%a\n", z);
}
```

\[y = 2^{-53} + 2^{-64} \]
Double rounding example

```c
int main() {
    double x = 1.0;
    double y = 0x1p-53 + 0x1p-64; // 2^{-53} + 2^{-64}
    double z = x + y;

    printf("z=%a\n", z);
}
```

```
gcc double_rounding.c
```

64-bit rounding

\[
\text{\texttt{\textcircled{64}(x + y)}}
\]

\[
y = 2^{-53} + 2^{-64}
\]

\[
z = 1.0 + 2^{-52}
\]
Double rounding example

```c
int main()
{
    double x = 1.0;
    double y = 0x1p-53 + 0x1p-64; // 2^{-53} + 2^{-64}
    double z = x + y;

    printf("z=%a\n", z);
}
```

gcc -mfpmath=387 double_rounding.c
Double rounding example

```c
int main()
{
    double x = 1.0;
    double y = 0x1p-53 + 0x1p-64;  // 2^{-53} + 2^{-64}
    double z = x + y;

    printf("z=\%a\n", z);
}
```

```
gcc double_rounding.c
```
Double rounding example

```c
int main()
{
    double x = 1.0;
    double y = 0x1p-53 + 0x1p-64; // 2^{-53} + 2^{-64}
    double z = x + y;

    printf("z=%a\n", z);
}
```

 GCC `gcc double_rounding.c`

```bash
gcc -mfpmath=387 double_rounding.c
```

Double rounding

\[y = 2^{-53} + 2^{-64} \]

1 + 2^{-52}

\[z = 1.0 \]
Idea of hardware-independent approach

State the rounding error of each floating-point computation whatever the environment

- 64-bit rounding
- 80-bit rounding
- double rounding
- FMA
Rounding error in round-to-nearest mode

Rounding error in normal range

Use relative error

\[
\left| \frac{x - \circ(x)}{x} \right| \leq 2^{-p} = \varepsilon
\]

Rounding error in subnormal range

Use absolute error

\[
|x - \circ(x)| \leq 2^{e_{\text{min}}-p} = \eta
\]

Well-known consequence of the standard
Rounding error in round-to-nearest mode

IEEE-754 double precision (64-bit rounding)

Normal range:

\[\left| \frac{x - o_{64}(x)}{x} \right| \leq 2^{-53} \]

Subnormal range:

\[|x - o_{64}(x)| \leq 2^{-1075} \]

x87 FPU (80-bit rounding)

Normal range:

\[\left| \frac{x - o_{80}(x)}{x} \right| \leq 2^{-64} \]

Subnormal range:

\[|x - o_{80}(x)| \leq 2^{-16446} \]
Rounding error in double rounding

Based on 64-bit and 80-bit rounding, with \(\alpha = 2^{-1022} \)

- \(|x| \geq \alpha \Rightarrow \left| \frac{x - \circ_64(\circ_{80}(x))}{x} \right| \leq 2050 \times 2^{-64} \)
- \(|x| \leq \alpha \Rightarrow |x - \circ_64(\circ_{80}(x))| \leq 2049 \times 2^{-1086} \)
Theorem 1

For a real number x, let $\boxplus(x)$ be either $\circ_{64}(x)$, or $\circ_{80}(x)$, or the double rounding $\circ_{64}(\circ_{80}(x))$.

With $\alpha = 2^{-1022}$, we have either

$$|x| \geq \alpha \text{ and } \left| \frac{x - \boxplus(x)}{x} \right| \leq \beta \text{ and } |\boxplus(x)| \geq \alpha$$

or

$$|x| \leq \alpha \text{ and } |x - \boxplus(x)| \leq \gamma \text{ and } |\boxplus(x)| \leq \alpha.$$

with $\beta = 2050 \times 2^{-64} \ (\gtrsim 2^{-53})$

$\gamma = 2049 \times 2^{-1086} \ (\gtrsim 2^{-1075})$
Rounding error of one operation

Theorem 1

For a real number x, let $\square(x)$ be either $\circ_{64}(x)$, or $\circ_{80}(x)$, or the double rounding $\circ_{64}(\circ_{80}(x))$.

With $\alpha = 2^{-1022}$, we have either

$$|x| \geq \alpha \text{ and } \left| \frac{x - \square(x)}{x} \right| \leq \beta \text{ and } |\square(x)| \geq \alpha$$

or

$$|x| \leq \alpha \text{ and } |x - \square(x)| \leq \gamma \text{ and } |\square(x)| \leq \alpha.$$

with $\beta = 2050 \times 2^{-64} \geq 2^{-53}$

$\gamma = 2049 \times 2^{-1086} \geq 2^{-1075}$

formally proved using the Coq proof assistant
Rounding error in presence of FMA

- 64-bit rounding
- 80-bit rounding
- Double rounding

FMA (Fused Multiply-Add)
Rounding error in presence of FMA

- 64-bit rounding
- 80-bit rounding
- Double rounding
- “Identity” rounding

\[\Box(x) = x \]
Rounding error in presence of FMA

- 64-bit rounding
- 80-bit rounding
- double rounding
- “identity” rounding

FMA (Fused Multiply-Add)

\[\circ(x \times y \pm z) \]

\[\square(x) = x \]
Rounding error in presence of FMA

64-bit rounding

80-bit rounding

double rounding

“identity” rounding

\[\Box(x) = x \]

FMA (Fused Multiply-Add)

\[\circ(x \times y \pm z) \]

\[\Box(\Box(x \times y) \pm z) \]
Rounding error in presence of FMA

- 64-bit rounding
- 80-bit rounding
- Double rounding
- "Identity" rounding

FMA (Fused Multiply-Add)

\[\diamond (\diamond (x \times y) \pm z) \]

"Identity" rounding

\[\diamond (x) = x \]
Rounding of a several operations

Theorem 2

If we define each result of an operation by the formulas of Theorem 1, and if we are able to deduce from these intervals an interval \(\mathcal{I} \) for the final result, then the really computed final result is in \(\mathcal{I} \) whatever the architecture and the compiler that preserves the order of operations.

\[
\begin{align*}
 x_1 &= a \times b \\
 x_2 &= x_1 + c \\
 \vdots \\
 x_n &= x_{n-1} \times d
\end{align*}
\]

\[
\begin{align*}
 &\xRightarrow{\text{Theorem 1}} x_1 \in \mathcal{I}_1(a, b) \\
 &\xRightarrow{\text{Theorem 1}} x_2 \in \mathcal{I}_2(x_1, c) \\
 \vdots \\
 &\xRightarrow{\text{Theorem 1}} x_n \in \mathcal{I}_n(x_{n-1}, d)
\end{align*}
\]

\[\rightarrow x_n \in \mathcal{I}(a, b, c, \ldots, d)\]

Frama-C/Jessie

Gappa
Rounding of a several operations

Theorem 2

If we define each result of an operation by the formulas of Theorem 1, and if we are able to deduce from these intervals an interval \(I \) for the final result, then the really computed final result is in \(I \) whatever the architecture and the compiler that preserves the order of operations.

\[
\begin{align*}
 x_1 &= a \times b \\
 x_2 &= x_1 + c \\
 \vdots \\
 x_n &= x_{n-1} \times d \\
 \frac{\text{Theorem 1}}{} & \quad x_1 \in I_1(a, b) \\
 \frac{\text{Theorem 1}}{} & \quad x_2 \in I_2(x_1, c) \\
 \vdots \\
 \frac{\text{Theorem 1}}{} & \quad x_n \in I_n(x_{n-1}, d) \\
\end{align*}
\]

\[\rightarrow x_n \in I(a, b, c, \ldots, d)\]

Correct for any compiler and architecture

Frama-C/Jessie

Gappa

Thi Minh Tuyen Nguyen

Formal proofs of numerical programs

23
Reordering

With $|e| \ll |x|$

- $(e + x) - x = 0$
- $e + (x - x) = e$

If the compiler reorders, what can we do?
Addition reordering-independent proofs

Theorem 3

Given a sequence of real numbers \((a_i)_{0 \leq i \leq n} (n \leq \frac{1}{\varepsilon})\) and a real \(l\). We assume that with \(\varepsilon_n = (1 + \varepsilon)^n - 1 \approx n\varepsilon\)

\[|x \oplus y - (x + y)| \leq \varepsilon_n \cdot (|x| + |y|) + n \cdot \eta\]

For an ordering \(o_1\) of the additions, \(S_{n}^{o_1}\) is the summation of \((a_i)\) with the order \(o_1\). If we are able to deduce that \(|S_{n}^{o_1} - \sum_{0}^{n} a_i| \leq l\), then, whatever the ordering \(o_2\) of the additions with the summation \(S_{n}^{o_2}\), we have \(|S_{n}^{o_2} - \sum_{0}^{n} a_i| \leq l\).

- Use \((|x| + |y|)\) instead of \((|x + y|)\)
- \(n\) is unknown
Addition reordering-independent proofs

Theorem 3

Given a sequence of real numbers \((a_i)_{0 \leq i \leq n}\) \((n \leq \frac{1}{\varepsilon})\) and a real \(I\). We assume that with \(\varepsilon_n = (1 + \varepsilon)^n - 1 \approx n\varepsilon\)

\[|x \oplus y - (x + y)| \leq \varepsilon_n \cdot (|x| + |y|) + n \cdot \eta\]

For an ordering \(o_1\) of the additions, \(S_{n}^{o_1}\) is the summation of \((a_i)\) with the order \(o_1\). If we are able to deduce that \(|S_{n}^{o_1} - \sum_{0}^{n} a_i| \leq I\), then, whatever the ordering \(o_2\) of the additions with the summation \(S_{n}^{o_2}\), we have \(|S_{n}^{o_2} - \sum_{0}^{n} a_i| \leq I\).

- Use \((|x| + |y|)\) instead of \((|x + y|)\)
- \(n\) is unknown
Addition reordering-independent proofs

- Consider 16 additions/subtractions:
 - $\varepsilon' = 2051 \cdot 2^{-60} \geq \varepsilon_{16}$
 - $\eta' = \eta_{16} = 2049 \times 2^{-1082}$

- Put as postconditions of the addition/subtraction: formulas

\[
| x \oplus y - (x + y) | \leq \varepsilon' \cdot (|x| + |y|) + \eta' \\
| x \ominus y - (x - y) | \leq \varepsilon' \cdot (|x| + |y|) + \eta'
\]
Hardware and addition reordering-independent proofs

Theorem 1

Let \(\varepsilon = 2050 \times 2^{-64} \)
Let \(\eta = 2049 \times 2^{-1086} \)

If we define each operation result as any real such that

\[
|x \oplus y - (x + y)| \leq \varepsilon \cdot (|x + y|) + \eta \\
|x \ominus y - (x - y)| \leq \varepsilon \cdot (|x - y|) + \eta \\
|x \otimes y - (x \ast y)| \leq \varepsilon \cdot |x \ast y| + \eta \\
|x \oslash y - (x/y)| \leq \varepsilon \cdot |x/y| + \eta \\
|\circ(\sqrt{x}) - \sqrt{x}| \leq \varepsilon \cdot |\sqrt{x}| + \eta
\]

and if we are able to deduce an interval \(\mathcal{I} \) for the final result then the really computed final result is in \(\mathcal{I} \) whatever

- the architecture and the compiler
Hardware and addition reordering-independent proofs

Theorem 4

Let \(\varepsilon = 2050 \times 2^{-64} \) and \(\varepsilon' = 2051 \times 2^{-60} \)

Let \(\eta = 2049 \times 2^{-1086} \) and \(\eta' = 2049 \times 2^{-1082} \)

If we define each operation result as any real such that

\[
|x \oplus y - (x + y)| \leq \varepsilon' \cdot (|x| + |y|) + \eta'
\]

\[
|x \ominus y - (x - y)| \leq \varepsilon' \cdot (|x| + |y|) + \eta'
\]

\[
|x \otimes y - (x \ast y)| \leq \varepsilon \cdot |x \ast y| + \eta
\]

\[
|x \oslash y - (x/y)| \leq \varepsilon \cdot |x/y| + \eta
\]

\[
|\circ(\sqrt{x}) - \sqrt{x}| \leq \varepsilon \cdot |\sqrt{x}| + \eta
\]

and if we are able to deduce an interval \(\mathcal{I} \) for the final result then the really computed final result is in \(\mathcal{I} \) whatever

- the architecture and the compiler
- the compiler reorganization with (maximum 16) additions/subtractions
#define E 0x1p−45
//@ logic integer l_sign(real x) = (x >= 0.0) ? 1 : −1;

/*@ requires e1<= x−\exact(x) <= e2;
@ ensures (\result != 0 ==> \result == l_sign(\exact(x))) &&
@ \abs(\result) <= 1 ;*/
int sign(double x, double e1, double e2) {
 if (x > e2) return 1;
 if (x < e1) return −1;
 return 0;
}

/*@ requires \abs(sx) <= 100.0 && \abs(sy) <= 100.0 &&
@ \abs(vx) <= 1.0 && \abs(vy) <= 1.0;
@ ensures \result != 0
@ ==> \result == l_sign(sx*vx+sy*vy)*l_sign(sx*vy−sy*vx);*/
int eps_line(double sx, double sy, double vx, double vy) {
 int s1=sign(sx*vx+sy*vy, −E, E);
 int s2=sign(sx*vy−sy*vx, −E, E);
 return s1*s2;
}
KB3D example

#define E 0x1p-45
//@ logic integer l_sign(real x) = (x >= 0.0) ? 1 : -1;

/*@ requires e1<= x – \exact(x) <= e2; @ ensures (\result != 0 ==> \result || \sign(\exact(x))) &&
 @ \abs(\result) <= 1 ;
int sign(double x, double e1, double e2)
 if (x > e2) return 1;
 if (x < e1) return -1;
 return 0;
}
/*@ requires \abs(sx) <= 100.0 &&
 @ \abs(vx) <= 1.0 && \abs(vy) <= 1.0;
@ ensures \result != 0
@ ==> \result == l_sign(sx*vx+sy*vy)*l_sign(sx*vy-sy*vx);*/
int eps_line(double sx, double sy, double vx, double vy) {
 int s1 = sign(sx*vx+sy*vy, -E, E);
 int s2 = sign(sx*vy-sy*vx, -E, E);
 return s1*s2;
}
KB3D example

```c
#define E 0x1p-45
//@ logic integer l_sign(real x) = (x >= 0.0) ? 1 : -1;

/*@ requires e1 <= x - exact(x) <= e2;
@ ensures (\result != 0 ==> \result == l_sign(exact(x))) &&
@ abs(\result) <= 1; */

int sign(double x, double e1, double e2) {
    if (x > e2) return 1;
    if (x < e1) return -1;
    return 0;
}

/*@ requires abs(sx) <= 100.0 &&
@ abs(vx) <= 1.0 &&
@ ensures result != 0
@ ==> result == l_sign(sx*vx+sy*vy) */

int eps_line(double sx, double sy) {
    int s1 = sign(sx*vx+sy*vy, -E, E);
    int s2 = sign(sx*vy-sy*vx, -E, E);
    return s1*s2;
}
```

Thi Minh Tuyen Nguyen
Formal proofs of numerical programs 28
KB3D example

```c
#define E 0x1p-45
//@ logic integer l_sign(real x) = (x >= 0.0) ? 1 : -1;

/*@ requires e1<= x-\exact(x) <= e2;
@ ensures (\result != 0 ==> \result == l_sign(\exact(x))) &&
@ \abs(\result) <= 1 ;*/

int sign(double x, double e1, double e2) {
    if (x > e2) return 1;
    if (x < e1) return -1;
    return 0;
}

/*@ requires \abs(sx) <= 100.0 &&
@ \abs(vx) <= 1.0 &&
@ ensures \result != 0
@ ==> \result == l_sign(sx*vx+s y*vy)
int eps_line(double sx, double sy)
int s1=sign(sx*vx+sy*vy, -E, E);
int s2=sign(sx*vy-sy*vx, -E, E);
return s1*s2;
```
KB3D example

```c
#define E 0x1p-45
//@ logic integer l_sign(real x)

/*@ requires e1 <= x - \exact(x) <= e2 
@ ensures (\result != 0 ==> \result = l_sign(\exact(x))) 
@ abs(\result) <= 1 */
int sign(double x, double e1, double e2)
{
    if (x > e2) return 1;
    if (x < e1) return -1;
    return 0;
}

/*@ requires \abs(sx) <= 100.0 && \abs(sy) <= 100.0 
@ abs(vx) <= 1.0 && abs(vy) <= 1.0; 
@ ensures \result != 0 
@ ==> \result == l_sign(sx*vx+sy*vy)*l_sign(sx*vy-sy*vx); */
int eps_line(double sx, double sy, double vx, double vy)
{
    int s1 = sign(sx*vx+sy*vy, -E, E);
    int s2 = sign(sx*vy-sy*vx, -E, E);
    return s1*s2;
}
```
Function eps_line

Default behavior

- check FP overflow

Safety

- check FP overflow

Precondition for user call

- precondition for user call

Function sign

Default behavior

- postcondition

```c
int eps_line(double sx, double sy, double vx, double vy)
{
    int s1, s2;

    s1 = sign(sx * vx + sy * vy, -0x1.9a0641p-45, 0x1.9a0641p-45);
    s2 = sign(sx * vy - sy * vx, -0x1.9a0641p-45, 0x1.9a0641p-45);

    return s1 * s2;
}
```
Strict IEEE-754: $E = 0x1p^{-45}$

```c
/*@ requires e1 <= x - \exact(x) <= e2; @*/
int sign(double x, double e1, double e2)
```

Arch-independent model: $E = 0x1.90641p^{-45}$

```c
int eps_line(double sx, double sy, double vx, double vy){
    int s1, s2;
    s1 = sign(sx * vx + sy * vy, -0x1.9a0641p-45, 0x1.9a0641p-45);
    s2 = sign(sx * vy - sy * vx, -0x1.9a0641p-45, 0x1.9a0641p-45);
    return s1 * s2;
}
```
Strict IEEE-754: $E = 0x1p-45$

Arch-independent model: $E = 0x1.90641p-45$

```c
int sign (double x, double e1, double e2)
```

```c
/*@ requires e1 <= x - exact(x) <= e2; @*/
```
Strict IEEE-754: $E = 0x1p-45$

```c
/*@ requires e1 <= x - \text{exact}(x) <= e2;
@*/
int sign(double x, double e1, double e2)

Arch-independent model: $E = 0x1.90641p-45$

```
Outline

1. Introduction
2. Preliminaries
3. Hardware-independent proofs
4. Hardware-dependent proofs
5. Conclusions and Future works
Back to the double rounding example

```c
int main()
{
    double x = 1.0;
    double y = 0x1p-53 + 0x1p-64;
    double z = x + y;

    //@ assert z == 1.0 + 0x1p-52;
}
```

- Strict IEEE-754 model: proves
  ```c
  //@ assert z == 1.0 + 0x1p-52;
  ```
 not true for some architecture/compiler

- Hardware-independent approach: proves
  ```c
  //@ assert 1.0 <= z <= 1.0 + 0x1p-52;
  ```
 an interval, not an exact value
Goals

Prove floating-point programs

- without assuming strict IEEE-754
- while taking compiler settings and architecture into account
Goals

Prove floating-point programs
- without assuming strict IEEE-754
- while taking compiler settings and architecture into account

How?

By analyzing assembly code, we know
- the precision of each operation
- the use of FMA
- etc.
Assembly code of double rounding example

```c
int main()
{
    double x = 1.0;
    double y = 0x1p−53 + 0x1p−64;
    double z = x + y;

    //@ assert z == ?;
}
```

```
movabsq $4607182418800017408, %rax
movq %rax, −8(%rbp)
movabsq $4368493837572636672, %rax
movq %rax, −16(%rbp)
movsd −8(%rbp), %xmm0
addsd −16(%rbp), %xmm0
movsd %xmm0, −24(%rbp)
```

Assembly code of double rounding example

```c
int main()
{
    double x = 1.0;
    double y = 0x1p-53 + 0x1p-64;
    double z = x + y;

    // @ assert z == ?;
}
```

```
 gcc -S
```

```
movabsq $4607182418800017408, %rax
movq %rax, -8(%rbp)
movabsq $436849383757263672, %rax
movq %rax, -16(%rbp)
movsd -8(%rbp), %xmm0
addsd -16(%rbp), %xmm0
movsd %xmm0, -24(%rbp)
```

Thi Minh Tuyen Nguyen Formal proofs of numerical programs 33
Assembly code of double rounding example

```c
int main() {
    double x = 1.0;
    double y = 0x1p-53 + 0x1p-64;
    double z = x + y;
    //@ assert z == ?;
}
```

```
movabsq $4607182418800017408, %rax
movq %rax, -8(%rbp)
movabsq $436849383757263672, %rax
movq %rax, -16(%rbp)
movsd -8(%rbp), %xmm0
addsd -16(%rbp), %xmm0
movsd %xmm0, -24(%rbp)
```

```
gcc -S
```

```
decode_float64(4607182418800017408) = 1.0
x
```

Thi Minh Tuyen Nguyen

Formal proofs of numerical programs

33
Assembly code of double rounding example

```c
int main() {
    double x = 1.0;
    double y = 0x1p-53 + 0x1p-64;
    double z;
}
```

```assembly
movabsq $4607182418800017408, %rax
movq %rax, -8(%rbp)
movabsq $4368493837572636672, %rax
movq %rax, -16(%rbp)
movsd -8(%rbp), %xmm0
addsd -16(%rbp), %xmm0
movsd %xmm0, -24(%rbp)
```

`gcc -S`
Assembly code of double rounding example

```c
int main()
{
    double x = 1.0;
    double y = 0x1p-53 + 0x1p-64;
    double z = x + y;
    return 0;
}
```

```assembly
movabsq $4607182418800017408, %rax
movq %rax, −8(%rbp)
movabsq $4368493837572636672, %rax
movq %rax, −16(%rbp)
movsd −8(%rbp), %xmm0
addsd −16(%rbp), %xmm0
movsd %xmm0, −24(%rbp)
```

```
decode_float64(4607182418800017408) = 1.0

decode_float64(4368493837572636672) = 2^{-53} + 2^{-64}
```
Assembly code of double rounding example

```c
int main()
{
    double x = 1.0;
    double y = 0x1p-53 + 0x1p-64;
    double z = x + y;
    decode_float64(4607182418800017408) = 1.0
    decode_float64(4368493837572636672) = 2^{-53} + 2^{-64}
}
```

```
    gcc -S decode [-0x-0] float64(4607182418800017408) = 1.0
    gcc -mfpmath=387 -S ◦80(x + y) ◦64(x + y)
```

```
    movabsq $4607182418800017408, %rax
    movq %rax, −8(%rbp)
    movabsq $4368493837572636672, %rax
    movq %rax, −16(%rbp)
    movsd −8(%rbp), %xmm0
    addsd −16(%rbp), %xmm0
    movsd %xmm0, −24(%rbp)
```
Assembly code of double rounding example

```c
int main() {
    double x = 1.0;
    double y = 0x1p-53 + 0x1p-64;
    double z = x + y;
}
```

```
/gcc -mfpmath=387 -S
```

```
decode_float64(4607182418800017408) = 1.0
```

```
decode_float64(4368493837572636672) = 2^{-53} + 2^{-64}
```

```
movabsq $4607182418800017408, %rax
movq %rax, -8(%rbp)
movabsq $4368493837572636672, %rax
movq %rax, -16(%rbp)
movsd -8(%rbp), %xmm0
fildl -8(%rbp)
addsd -16(%rbp), %xmm0
faddl -16(%rbp)
movsd %xmm0, -24(%rbp)
fstpl -24(%rbp)
```
Assembly code of double rounding example

```c
int main() {
    double x = 1.0;
    double y = 0x1p-53 + 0x1p-64;
    double z = x + y;
}
```

```
 gcc -mfpmath=387 -S

 decode_float64(4607182418800017408) = 1.0
 decode_float64(4368493837572636672) = 2^{-53} + 2^{-64}
```

Instructions:
- `movabsq $4607182418800017408, %rax`
- `movq %rax, -8(%rbp)`
- `movabsq $4368493837572636672, %rax`
- `movq %rax, -16(%rbp)`
- `movsd -8(%rbp), %xmm0`
- `addsd -16(%rbp), %xmm0`
- `movsd %xmm0, -24(%rbp)`
- `fldl -8(%rbp)`
- `faddl -16(%rbp)`
- `fstopl -24(%rbp)`
Assembly code of double rounding example

```c
int main() {
    double x = 1.0;
    double y = 0x1p-53 + 0x1p-64;
    double z = x + y;
}
```

```
gcc -mfpmath=387 -S
```

```assembly
movabsq $4607182418800017408, %rax
movq %rax, -8(%rbp)
movabsq $4368493837572636672, %rax
movq %rax, -16(%rbp)
movsd 8(%rbp), %xmm0
addsd -16(%rbp), %xmm0
movsd %xmm0, 24(%rbp)
```

- `decode_float64(4607182418800017408) = 1.0`
- `decode_float64(4368493837572636672) = 2^{-53} + 2^{-64}`
C program + annotations

preparation

C program + inline assembly

gcc -S

assembly code + annotations

GNU Assembler modified

proof obligations in Why

automatic/interactive provers
Operands

- `movq $4607182418800017408, %rax`
- `movq %rdx, -4(%rbp)`

An operand is either

- an immediate constant (a decimal integer)
- a register: `%eax`, `%rdx`, etc.
- a memory reference
Operands

\begin{verbatim}
movq $4607182418800017408, %rax
movq %rdx, -4(%rbp)
\end{verbatim}

An operand is either

- an immediate constant (a decimal integer)
- a register: \%eax, \%rdx, etc.
- a memory reference

Operands are not typed: may denote an integer, a float, an address, etc.
Translation of operands

Type register

CPU registers/memory references are represented in Why by references (aka mutable variables) of type register

```plaintext
logic sel_int32  : register -> int32
logic sel_int64  : register -> int64
logic sel_single : register -> single
logic sel_double : register -> double
```
General-purpose instructions

\[
\text{parameter} \ \text{move_gte64}: \ a : \text{int} \to b : \text{real} \\
\to r : \text{register refl} \\
\{ \}
\text{unit writes} \ r \\
\{ \ \text{integer_of_int64}(\text{sel_int64}(r)) = a \ \text{and} \\
\text{double_value}(\text{sel_double}(r)) = b \ \}
\]

\[
\begin{align*}
[\text{movq imm, reg}]_i & = \text{move_gte64} \ [\text{imm}]_{\text{int64}} \ [\text{imm}]_{\text{double}} \ \text{reg} \\
[\text{movq src, reg}]_i & = \text{move_gte64} \ [\text{src}]_{\text{int64}} \ [\text{src}]_{\text{double}} \ \text{reg}
\end{align*}
\]

\[
\begin{align*}
[\text{imm}]_{\text{int64}} & = \text{imm} \\
[\text{imm}]_{\text{double}} & = \text{decode_float64}(\text{imm}) \\
[\text{reg}]_{\text{int64}} & = \text{of_int64}(\text{sel_int64}(!\text{reg})) \\
[\text{reg}]_{\text{double}} & = \text{double_value}(\text{sel_double}(!\text{reg}))
\end{align*}
\]
Copy examples

- Immediate to register

  ```
  movq  $4607182418800017408, %rax
  ```

 Why:

  ```
  move_cste64 4607182418800017408 1.0 _rax
  ```

 decode_float64(4607182418800017408) = 1.0

- Register to register

  ```
  movq  %rdx, %rax
  ```

 Why:

  ```
  move_cste64 (of_int64(select64(!rdx)))
  (double_value(select_double(!rdx))) _rax
  ```
Translation of SSE2 instructions

\[
\text{parameter } \text{set_double} : a : \text{real} \rightarrow b : \text{register } \text{ref} \rightarrow \\
\{ | o_{64}(a) | \leq \text{max_double} \} \\
\text{unit writes } b \\
\{ \text{double_value}(\text{sel_double}(b)) = o_{64}(a) \}
\]

\[
[\text{addsd src, dest}]_i = \text{set_double} ([\text{dest}]_{\text{double}} + [\text{src}]_{\text{double}}) \text{dest}
\]

- similar for \text{sub} and \text{mul}
- For \text{div}: checks division by 0 in the precondition

SSE2: Streaming SIMD Extensions 2
Translation of FMA instructions

\[\odot(x \times y + z) \]

\[[vfmaddsd \ src3, \ src2, \ src1, \ dest]; =
set_double\ (\[src1\]_{\text{double}} \times \[src2\]_{\text{double}} + \[src3\]_{\text{double}}) \ dest\]
Translation of x87 Floating-point Unit (FPU): stack issue

Assembly

- Stack of eight 80-bit registers: `%st0` to `%st7`
- Top-of-stack pointer TOS: the current position in the stack
- Index relative to TOS
- Example:
 \[
 \text{fadd } %st(1), %st(0)
 \]
 Adds to the register at top the value of the register below the top

Why

- 8 variables of type register ref
- Value of TOS at each instruction is computed statically by
 \[
 %st(i) \text{ interpreted as } _{\text{st}}i
 \]
 where \(i = TOS + i \)
- \(0 \leq TOS < 8 \)
KB3D example

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Optim. level</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSE2</td>
<td>-00</td>
<td>2048×2^{-56}</td>
</tr>
<tr>
<td>x87</td>
<td>-00</td>
<td>1025×2^{-56}</td>
</tr>
<tr>
<td>x87</td>
<td>-02</td>
<td>1025×2^{-56}</td>
</tr>
<tr>
<td>FMA</td>
<td>-02</td>
<td>1536×2^{-56}</td>
</tr>
<tr>
<td>strict IEEE-754</td>
<td></td>
<td>2048×2^{-56}</td>
</tr>
<tr>
<td>any arch.</td>
<td></td>
<td>3203×2^{-56}</td>
</tr>
</tbody>
</table>
Other assembly instructions

Also supported

- tests and jumps (if, while, etc.)
- function calls
- indirect memory access (arrays, pointers)
Other assembly instructions

Also supported

- tests and jumps (if, while, etc.)
- function calls
- indirect memory access (arrays, pointers)

How?

- Translation of any control flow graph into Why inspired by [Barnett & Leino, 2005] and [Filliâtre, 2007]
- Use a memory model with a few separation hypothesis
Scalar product: With loop and pointers

#define NMAX 10
#define B 0x1.1p-50

/*@ requires 0 <= n <= NMAX;
 @ requires valid_range(x,0,n-1) && valid_range(y,0,n-1)
 @ requires forall integer i; 0 <= i < n ==>
 @ abs(x[i]) <= 1.0 && abs(y[i]) <= 1.0 ;
 @ ensures abs(result - exact(result)) <= n * B; */
double scalar_product(double x[], double y[], int n) {
 double p = 0.0;

 for (int i=0; i < n; i++) {
 L:
 p = p + x[i]*y[i];
 /*@ assert abs(p - (at(p,L) + x[i]*y[i])) <= B; */
 }
 return p;
}
Scalar product: With loop and pointers

```c
#define NMAX 10
#define B 0x1.1p−50

/*@ requires 0 < n <= NMAX; @ requires \forall \text{integer } i; 0 <= i < n \implies \text{range}(y,0,n−1) @ requires \forall i; \abs(x[i]) <= 1.0 && \abs(y[i]) <= 1.0 ; @ ensures \abs(\text{result} - \text{exact(\text{result})}) <= n * B; */

double scalar_product(double x[], double y[], int n) {
    double p = 0.0;

    for (int i=0; i < n; i++) {
        L:
        p = p + x[i] * y[i];
        /*@ assert \abs(p - (\text{at}(p,L) + x[i]*y[i])) <= B; */
    }
    return p;
}
```

Two vectors \(x \) and \(y \)

- have \(n \) elements
- are represented as arrays of doubles

Two vectors \(x \) and \(y \) have \(n \) elements and are represented as arrays of doubles. The scalar product of two vectors is computed by:

\[
\sum_{0 \leq i < n} x_i y_i
\]

The value of \(p \) might be calculated by either:

- following strictly the IEEE-754 standard
- using x87 with 80-bit internal registers
- using x87 with optimization (\(p \) is stored in 80-bit register)
- using the FMA instructions.

The rounding error \(B \) at each step depends on the options of compiler/architecture. The value of \(B \) depends on the value of \(NMAX \).
Scalar product: With loop and pointers

```c
#define NMAX 10
#define B 0x1.1p-50

double scalar_product(double x[], double y[], int n) {
    double p = 0.0;
    for (int i = 0; i < n; i++) {
        p = p + x[i] * y[i];
        /*@ assert \abs(p - (\at(p,L) + x[i]*y[i])) <= B; */
    }
    return p;
}
```

The scalar product of two vectors is computed by:

\[\sum_{0 \leq i < n} x_i y_i \]

Two vectors \(x \) and \(y \) have \(n \) elements are represented as arrays of doubles. The scalar product of two vectors is computed by:

\[\sum_{0 \leq i < n} x_i y_i \]

The value of \(p \) might be calculated by either:

- Following strictly the IEEE-754 standard
- Using x87 with 80-bit internal registers
- Using the FMA instructions.

The rounding error \(B \) at each step depends on the options of compiler/architecture. The value of \(B \) depends on the value of \(NMAX \).
Scalar product: With loop and pointers

```c
#include <stdio.h>

int main() {
    double x[10], y[10], p = 0.0;
    for (int i = 0; i < 10; i++) {
        x[i] = i;  // Example values
        y[i] = i;  // Example values
    }
    p = scalar_product(x, y, 10);
    printf("%f\n", p);
    return 0;
}
```

The value of p might be calculated by either
- following strictly the IEEE-754 standard
- or using x87 with 80-bit internal registers
- or using x87 with optimization (p is stored in 80-bit register)
- or using the FMA instructions.
Scalar product: With loop and pointers

```c
#define NMAX 10
#define B 0x1.1p-50

/* @ requires 0 <= n <= NMAX;
   @ requires valid_range(x,0,n-1) && valid_range(y,0,n-1)
   @ requires forall integer i; 0 <= i < n ==> abs(x[i]) < 1.0 && abs(y[i]) < 1.0 ;
   @ ensures double scalar_product(x, y, n) { double p = 0.0;
     for (int i=0; i < n; i++) {
       L:
       p = p + x[i]*y[i];
       /* @ assert abs(p - (at(p,L) + x[i]*y[i])) <= B; */
     }
     return p;
   }
```

Two vectors \(x \) and \(y \) have \(n \) elements are represented as arrays of doubles. The scalar product of two vectors is computed by:

\[
\sum_{0 \leq i < n} x[i] y[i]
\]

The value of \(p \) might be calculated by either:
- Following strictly the IEEE-754 standard
- Using x87 with 80-bit internal registers
- Using x87 with optimization (\(p \) is stored in 80-bit register)
- Using the FMA instructions.

The rounding error \(B \) at each step: depends on the options of compiler/architecture.

The value of \(B \) depends on the value of \(NMAX \).
Scalar product: With loop and pointers

```c
#define NMAX 10
#define B 0x1.1p-50

/*@ requires 0 <= n <= NMAX;
  @ requires valid_range(x,0,n-1) && valid_range(y,0,n-1);
  @ requires forall integer i; 0 <= i < n ==> 
  @    abs(x[i]) <= 1.0 && abs(y[i]) <= 1.0 ;
  @ ensures abs(result - exact(result)) <= n * B; */
double scalar_product(double x[], double y[], int n) {
    double p = 0.0;

    for (int i=0; i < n; i++) {
        p = p + x[i]*y[i];
        /*@ assert abs(p - (at(p,L) + x[i]*y[i])) <= B; */
    }
    return p;
}
```

Two vectors x and y have n elements are represented as arrays of doubles. The scalar product of two vectors is computed by:

$$\sum_{0 \leq i < n} x[i] y[i]$$

The value of p might be calculated by either following strictly the IEEE-754 standard or using x87 with 80-bit internal registers or using x87 with optimization (p is stored in 80-bit register) or using the FMA instructions. The rounding error B at each step: depends on the options of compiler/architecture. The value of B depends on the value of $NMAX$.

Thi Minh Tuyen Nguyen
Formal proofs of numerical programs 44
Scalar product example: The value of rounding error B

<table>
<thead>
<tr>
<th>Arch.</th>
<th>NMAX</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>100</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>SSE2 -O0</td>
<td>0x1.1p-50</td>
<td>0x1.02p-47</td>
<td>0x1.004p-44</td>
<td></td>
</tr>
<tr>
<td>x87 -O0</td>
<td>0x1.0022p-50</td>
<td>0x1.0021p-47</td>
<td>0x1.00201p-44</td>
<td></td>
</tr>
<tr>
<td>x87 -O2</td>
<td>0x1.1p-61</td>
<td>0x1.02p-58</td>
<td>0x1.004p-55</td>
<td></td>
</tr>
<tr>
<td>FMA -O2</td>
<td>0x1p-50</td>
<td>0x1p-47</td>
<td>0x1p-44</td>
<td></td>
</tr>
<tr>
<td>strict IEEE-754</td>
<td>0x1.1p-50</td>
<td>0x1.02p-47</td>
<td>0x1.004p-44</td>
<td></td>
</tr>
<tr>
<td>any arch.</td>
<td>0x1.629p-46</td>
<td>0x1.94ep-43</td>
<td>0x1.f55p-40</td>
<td></td>
</tr>
</tbody>
</table>
Outline

1. Introduction
2. Preliminaries
3. Hardware-independent proofs
4. Hardware-dependent proofs
5. Conclusions and Future works
Conclusions

Two approaches:

- **Hardware-independent proofs**
 - Gives correct rounding errors whatever the architecture and the choices of the compiler
 - **Drawback:**
 - Incomplete: only proves rounding errors
 - Get worse rounding errors than in practice

- **Hardware-dependent proofs**
 - Analyze assembly code
 - **Translator:** $\approx 10K$ lines of C code
 - Show that proving complex behavior of C floating-point programs on their assembly code is possible.
Future works

Hardware-independent proofs:
- Look into multiplication reordering and other optimizations

Hardware-dependent proofs:
- Ongoing work: bit-level reasoning
 - Some experiences in my memoir
 - Complicates proof a lot
- Longer term perspectives:
 - Integrate my approach into a certified compiler [Herms et al., 2012]
 to reduce the trusted code base
Thank you for your attention!
Thank you for your attention!
Translation of a function in assembly into Why

f:
```assembly
.cfi_startproc
    mov reg, mem_ref
    # move input values of the function from register to memory_reference
    /*@ requires P;*/
    (body of the function f)
    //@ assert A;
    mov mem_ref, reg
    # move output value of the function from memory_reference to register
    /*@ ensures Q;*/
    leave
    ret
.cfi_endproc
```

let f() =
```plaintext
[move reg, mem_ref];

[{}] unit reads V {[[P]_annot]};

[(body of the function f)];
assert {[[A]_annot]};

[move reg, mem_ref];

assert {[[Q]_annot]};

void
parameter f: unit ->
{{[P]_annot} unit writes w {[[Q]_annot]}

Thi Minh Tuyen Nguyen
Formal proofs of numerical programs
**x87 instructions**

```plaintext
parameter set_80: a:real -> b:register ref ->
{ no_overflow_binary80(\ nearest_even ,a) }
unit writes b
{ binary80_value(sel_binary80(b))
 = round_binary80(nearest_even ,a) }

[flsl src]; = set_80 [src]_{double} st0
[fstl dest]; = set_double [st0]_{binary80} dest
[faddl src]; = set_80 ([st0]_{binary80}+[src]_{double}) st0

where set_80 is similar to set_double for 80 bits
```
Memory model in Why

```plaintext
type 'v memory
logic select: 'v memory, int → 'v
```

Memory consists of registers:

```plaintext
parameter MEM: register memory ref
```
Translation of memory reference

\[
\begin{align*}
[\text{mem}]_{\text{int32}} &= \text{of}_{\text{int32}}(\text{select}(\text{MEM}, [\text{mem}]_{\text{addr}})) \\
[\text{mem}]_{\text{int64}} &= \text{of}_{\text{int64}}(\text{select}(\text{MEM}, [\text{mem}]_{\text{addr}})) \\
[\text{mem}]_{\text{single}} &= \text{single}_{\text{value}}(\text{select}(\text{MEM}, [\text{mem}]_{\text{addr}})) \\
[\text{mem}]_{\text{double}} &= \text{double}_{\text{value}}(\text{select}(\text{MEM}, [\text{mem}]_{\text{addr}})) \\
[\text{mem}]_{\text{binary80}} &= \text{binary80}_{\text{value}}(\text{select}(\text{MEM}, [\text{mem}]_{\text{addr}})) \\
[\text{mem}]_{\text{exact}} &= \text{select}(\text{MEM}, [\text{mem}]_{\text{addr}})
\end{align*}
\]

A memory reference \text{mem} having the general form:
\[
\text{disp}(\text{base}, \text{index}, \text{scale})
\]
is interpreted as
\[
[\text{mem}]_{\text{addr}} = [\text{base}]_{\text{int64}} + \text{disp} + \text{scale} \times [\text{index}]_{\text{int64}}
\]
When the memory is updated

\[
\text{predicate unchanged}\_\text{mem}(\text{MEM1: register memory}, \\
\text{MEM2: register memory}, \text{addr: int}, \text{nb: int}) = \\
( \text{for all } i: \text{int. } i <= \text{addr}-8 \text{ or } i >= \text{addr+nb} \rightarrow \\
\text{select(\text{MEM1, i}) = select(\text{MEM2, i})}) \\
\text{and} \\
( \text{for all } i: \text{int. } i <= \text{addr}-4 \rightarrow \\
\text{of\_int32(\text{sel\_int32(select(\text{MEM1, i}))}) =} \\
\text{of\_int32(\text{sel\_int32(select(\text{MEM2, i}))})} \\
\text{and} \\
\text{single\_value(\text{sel\_single(select(\text{MEM1, i}))}) =} \\
\text{single\_value(\text{sel\_single(select(\text{MEM2, i}))})}) 
\]
Translation of instructions

```plaintext
parameter move_reg_to_mem64: a:register -> b:int->
{ }
unit writes MEM
{
 of_int64(select(MEM, b)) =
 of_int64(select(MEM, a))
 and
 double_value(select(select(MEM, b))) =
 double_value(select(a))
 and
 unchanged_mem(MEM, MEM@, b, 8) }

[movq reg, mem]; = move_reg_to_mem64 [reg]_{src} [mem]_{addr}
```
Worst case - Algorithm

if \( c_0 \) then \( t_0 \) else \( e_0 \);
if \( c_1 \) then \( t_1 \) else \( e_1 \);
if \( c_2 \) then \( t_2 \) else \( e_2 \);
...
if \( c_k \) then \( t_k \) else \( e_k \);
The number of paths is $2^k$.

If we insert invariants at each node: the number of paths is $2^k$. 
Select and store in memory model

logic select: 'v memory, int -> 'v
logic store: 'v memory, int, 'v -> 'v memory

Relation between “store” and “select”:

axiom select_store_eq:
forall m: 'v memory. forall p1: int. forall p2: int.
forall a: 'v [store(m,p1,a),p2].
p1=p2 -> select(store(m,p1,a),p2) = a

axiom select_store_neq:
forall m: 'v memory. forall p1: int. forall p2: int.
forall a: 'v [store(m,p1,a),p2].
p1 <> p2 -> select(store(m,p1,a),p2) = select(m,p2)

- Make the proofs slow
- Gappa are not able to use directly the axioms
Only “select” is used

parameter move_reg_to_mem64: a:register -> b:int->
{ }

  unit writes MEM
{ integer_of_int64(select(MEM, b))
    = integer_of_int64(select(MEM, b))

  and
  double_value(select(MEM, b))
    = double_value(select(MEM, b))

  and
  sel_exact(select(MEM, b))=sel_exact(a)
  and
  unchanged_mem(MEM, MEM@, b, 8) }

If we use “store”:

MEM = store(MEM@,b,a)

Use directly “select”:

- Specify in the post-condition of the parameter all the properties that we need: what is changed, what is not changed
Use of Why in this thesis

ACSL-annotated C program

Frama-C

multirounding model

Jessie plug-in

Why platform

Why VC Generator

Automatic/interactive provers

inline assembly translator

Assembly code

modified version of GNU Assembler